-
1
-
2
隆广庆,教授,南宁师范大学党委副书记、副校长、博士生导师
email:longgq@nnnu.edu.cn longgq@amss.ac.cn
【研究兴趣】
积分微分方程数值算法;特征值问题数值解法;
奇异摄动问题数值解法;界面问题高精度数值算法;
【教育经历】
1、2007.06-2009.07,中国科学院数学所博士后流动站工作。导师:许跃生教授;
2、2003.09-2006.06,中山大学计算数学专业,获理学博士学位。导师:陈仲英教授、许跃生教授;
3、2000.09-2003.06,中山大学计算数学专业,获理学硕士学位。导师:陈仲英教授、许跃生教授;
4、1993.09-1997.06,兰州大学计算数学专业,获理学学士学位;
【工作经历】
1、2018.12--至今, 南宁师范大学数学与统计学院 教授;
2、2012.11--2013.06,美国the university of alabama数学系 访问学者;
3、2009.12--2018.12 ,广西师范学院数学科学学院 教授
4、1997.07--2009.12, 广西师范学院数学系 讲师、副教授;
【行政管理】
1、2023.11-- 至今 ,南宁师范大学党委副书记;
2、2021.04-- 2023.12,南宁师范大学党委常委、副校长;
3、2021.01-- 2021.05,南宁师范大学 校长助理;
4、2020.07-- 2021.05,南宁师范大学 数学与统计学院 党委书记;
5、2018.12-- 2021.05,南宁师范大学 数学与统计学院 院长;
6、2015.06-- 2018.12,广西师范学院数学与统计科学学院 院长;
7、2012.06--2015.06, 广西师范学院数学科学学院 副院长;
【学术兼职】
1、广西数学会 副理事长(2022-2025);
2、广西运筹学会副理事长(2020-2023);
3、教育部师范类专业认证专家(2021—— )
【荣誉】
2016年广西高校优秀共产党员;
2014年获广西高校 “卓越学者”;
2013年获广西科技进步三等奖;
2012年入选广西财政出国留学资助计划;
2010年入选广西高校优秀人才资助计划;
【国家项目】
1、国家自然科学基金项目(项目号:12261062)非线性steklov特征值问题保奇性边界积分方程快速算法的若干研究,2023.1—2026.12;主持;
2、国家自然科学基金项目(项目号:11826211)奇异摄动对流扩散方程的高阶谱配置法的研究,2019.1—2019.12;主要参与(排名第三);
3、国家自然科学基金项目(项目号:11761015)几类奇异摄动问题的自适应移动网格方法及其应用研究,2018.1—2021.12;主要参与(排名第二);
4、国家自然科学基金项目(项目号:11461011)积分算子特征值问题多尺度快速算法的若干研究,2015.1—2018.12;主持;
5、国家自然科学基金项目(项目号:11061008)积分方程高精度多尺度快速算法的若干研究,2011.1—2013.12;主持;
【学术论文】
【2023】
1、c. li, y. ren, g. long, e. boerman and s. zhao, a fast sine transform accelerated high-order finite difference method for parabolic problems over irregular domains, journal of scientific computing, 95 (2023), 49.
2、l. liu, y. liao and g. long*, error estimate of bdf2 scheme on a bakhvalov-type mesh for a singularly perturbed volterra integro-differential equation, networks and heterogeneous media, 18 (2023), no. 2, 547-561.
3、l. liu, y. liao* and g. long, a novel parameter-uniform numerical method for a singularly perturbed volterra integro-differential equation, computational and applied mathematics,42(2023), 12.
4、y. liao, l. liu*, l. xu and g. long, richardson extrapolation method for 2d-spp on vb mesh singularly perturbed convection-diffusion problem on a vulanović-bakhvalov mesh, computational and applied mathematics, 42(2023), 117.
【2022】
1、x. zhu, d. cheng and g. long, matched interface and boundary method for the helmholtz equation with a discretization by 4th-order 17-point fd scheme, journal of physics: conference series 2219 (2022), 12020.
2、l. b. liu, c. zhu and g. long, numerical analysis of a system of semilinear singularly perturbed first-order differential equations on an adaptive grid, math method appl sci 45 (2022), no. 4, 2042-2057.
3、y. li, s. yang and g. long, continuity of random attractors on a topological space and fractional delayed fitzhugh-nagumo equations with wz-noise, discrete & continuous dynamical systems - b 27 (2022), no. 10, 5977-6008.
【2021】
1、c. li, g. long, y. li and s. zhao, alternating direction implicit (adi) methods for solving two-dimensional parabolic interface problems with variable coefficients, computation, 9 (2021), pp. 79-79.
2、h. feng, g. long and s. zhao, fft-based high order central difference schemes for poisson’s equation with staggered boundaries, journal of scientific computing, 86 (2021), pp. 1-25.
3、g. long, r. jie and l. b. liu, multilevel augmentation methods for eigen-problems of compact integral operators, numerical algorithms, 88 (2021), pp. 1523-1540.
4、g. long, l. b. liu and z. huang, richardson extrapolation method on an adaptive grid for singularly perturbed volterra integro-differential equations, numerical functional analysis and optimization, 42 (2021), pp. 739-757.
【2020】
1、l. b. liu, g. long* and z. cen, a robust adaptive grid method for a nonlinear singularly perturbed differential equation with integral boundary condition, numerical algorithms, 83 (2020), pp. 719-739.
2、c. li, z. wei, g. long, c. campbell, s. ashlyn and s. zhao, alternating direction ghost-fluid methods for solving the heat equation with interfaces, computers & mathematics with applications, 80 (2020), pp. 714-732.
3、l. liu, z. liang, g. long and y. liang, convergence analysis of a finite difference scheme for a riemann–liouville fractional derivative two-point boundary value problem on an adaptive grid, journal of computational and applied mathematics, 375 (2020), pp. 112809.
【2018-2019】
1、h. feng, g. long and s. zhao, an augmented matched interface and boundary ( mib ) method for solving elliptic interface problem, journal of computational and applied mathematics, 361 (2019), pp. 426-443.
2、l.b. liu, h. leng and g. long, analysis of the sdfem for singularly perturbed differential–difference equations, calcolo, 55 (2018), pp. 23.
3、p. das, g. nelakanti and g. long, discrete legendre spectral galerkin method for urysohn integral equations, international journal of computer mathematics, 95 (2018), pp. 465-489.
4、l.b. liu, g. long, z. huang and a. ouyang, rational spectral collocation and differential evolution algorithms for singularly perturbed problems with an interior layer, journal of computational and applied mathematics, 335 (2018), pp. 312-322.
scholat.com 学者网 |
about us | 凯发k8官网下载客户端 |